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ABSTRACT 

Conducting network administration training in an operational tactical network 

environment introduces a level of risk to the network that is unacceptable to operational 

commanders. This forces a choice between the readiness of network administrators and 

the availability of the tactical network as an operational platform. To address this 

conflict, the Mapping, Awareness, and Virtualization Network Administrator Training 

Tool (MAVNATT) architecture has been designed to map and enumerate an operational 

network in order to create a fully partitioned, faithful virtual copy of that network that can 

be used safely for network administrator training. A capability does not exist to 

automatically generate a virtual copy of a network based on a graphical model of that 

network. This work solved this problem by implementing a prototype of the MAVNATT 

Virtualization Module, which creates a virtual copy of a mapped operational network. We 

tested the output of the Virtualization Module against the functional requirements of the 

MAVNATT system. The prototype implementation successfully integrates a 

virtualization hypervisor, a network simulator, and a WAN emulator to create a virtual 

network based on a graph model of an operational network, and demonstrates the 

ultimate attainability of the MAVNATT architecture’s objectives. 
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I. INTRODUCTION 

In order for Department of Defense (DOD) network administrators to maintain a 

high level of technical readiness, they must train in an environment that resembles as 

closely as possible the operational network for which they are responsible. Currently, 

there is no turnkey solution that allows network administrators complete access to an 

operational network without introducing some level of risk to the stability of that 

network. Training in a lab environment eliminates the risk element; however, it provides 

only a stale representation of a network and does not accurately represent the 

environment the administrators are training to defend. To help mitigate this network 

administrator training gap, the Mapping, Awareness, and Virtualization Network 

Administrator Training Tool (MAVNATT) system was pioneered by Naval Postgraduate 

School (NPS) student Daniel McBride [1], and remains under development at NPS.  

The design intent of MAVNATT is to provide the capability of mapping a 

network topology, assessing and monitoring the operational status of that network, and 

creating a virtual copy of the network that is fully partitioned from the operational 

network. The result provides network administrators with complete flexibility in training 

exercises and scenarios, while ensuring that the operational network is not impacted by 

any training evolution. The MAVNATT system consists of three discrete modules for 

mapping, awareness, and virtualization. This thesis addresses the Virtualization Module 

of the MAVNATT system, which consists of the following components: a virtualization 

hypervisor, a network simulator, a wide area network (WAN) emulator, and the 

virtualization module program that integrates these components. The virtualization 

module of MAVNATT is responsible for the creation of the virtual environment within 

which a training scenario may be executed.  

A. PROBLEM STATEMENT 

The Mapping Module of the MAVNATT system maps and enumerates the 

operational network environment and then compiles an inventory and configuration 

details of the nodes within that network. The Module then outputs an open-format graph 
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file containing node elements representing computers and other network devices, edge 

elements representing network links, and attribute data describing the configuration of 

those elements. Once that open-format graph file is created, the Virtualization Module is 

responsible to build the virtual instance of the network based on the information provided 

therein. In the development of the MAVNATT virtualization module, we investigated the 

following research questions:  

1. Primary Question 

Is it possible to develop an automated process to virtualize the primary 

components (router, switches, computers, and links) of an operational network, based 

upon an open-format graphical representation of the network’s architecture?  

2. Secondary Questions 

To what degree of granularity can the MAVNATT designated hypervisor and 

network simulator application program interfaces (API) be used to mirror the operational 

network in a virtual instance?  

Can the prototype meet the functionality requirements that were identified within 

McBride’s thesis [1, p. 61], in order to provide a useful training environment?  

B. ASSUMPTIONS 

The development of the prototype Virtualization Module of MAVNATT assumed 

the following: 

 A basic collection of network node and edge attribute data can be passed 
from the Mapping and Awareness Modules of MAVNATT to the 
Virtualization Module in the form of an open-format graph file, which can 
then be utilized to create a virtual copy of the network.  

 Data received as input into the MAVNATT Virtualization Module can 
provide sufficient detail of the operational network’s node and edge 
attributes to create basic virtual machine (VM), virtual network device, 
and network link functionality within the virtual copy of the network. 

 MAVNATT can parse the attribute data for use as inputs into the VM 
hypervisor and network simulator components of the Virtualization 
Module by using each tool’s respective API. 
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 Server and workstation operating systems (OS) included within the 
operational network shall be created from a gold disk build for each 
respective OS within the Virtualization Module. Custom OSs, 
applications, and configurations deviating from the gold disk build will be 
provided by network administrator intervention following the execution of 
the MAVNATT virtualization process.  

C. OBJECTIVES 

The main objective of this work was to provide a prototype of MAVNATT’s 

Virtualization Module. Included in the prototype is the ability to receive an open-format 

graph file as an input, interpret the file to use the MAVNATT virtualization hypervisor 

and network simulator to create corresponding computers and network devices, and 

establish basic network connectivity between those devices.  

D. BENEFITS OF STUDY 

This work generated a prototype of the MAVNATT system Virtualization 

Module, which provides network administrators with network awareness, simulation, and 

training functionality of a tactical network. By developing a system that supports these 

major areas, we enhance the readiness and overall effectiveness of DOD network 

administrators by creating training opportunities during all stages of training and 

operations [1, p. 23].  

This work increased the understanding of how a virtualized network can be 

automatically created from an open-format graphical input. It also explored how the 

virtual components of that network can be automatically configured through that process 

to provide a host network for executing the Malicious Activity Simulation Tool (MAST) 

or other network administrator training tools. The creation of a training environment that 

both duplicates and remains completely partitioned from the operational network was a 

key benefit of this research. 

E. ORGANIZATION 

The rest of the thesis is organized in the following manner: 
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Chapter II: Background and Previous Work. This chapter outlines the purpose 

for creating a network administrator training environment that closely resembles a target 

operational network. It then discusses how the MAVNATT Virtualization Module 

derives a virtual copy of the operational network based upon the input received from the 

Mapping Module. Also discussed is the Awareness Module’s feed into the Virtualization 

Module to populate the MAVNATT graphical user interface (GUI) in real time with the 

status of network links and node reachability.  

Chapter III: System Requirements and Design. This chapter discusses the node 

and link attributes of the operational network that are required to create an accurate 

virtual instance of the target network, as well as the system requirements necessary to 

accommodate the MAVNATT conceptual network that this prototype uses as a sample 

input. We also more thoroughly discuss the components of the Virtualization Module and 

how they address the MAVNATT system’s functional requirements. Finally, this chapter 

also introduces architectural variations of MAVNATT that may enhance the system’s 

functionality. 

Chapter IV: System Implementation. This chapter discusses the tools, 

applications, APIs, and protocols used to create a virtual network from the given input. It 

also shows how each of the four sub-components were configured to meet the 

Virtualization Module’s functionality requirements. Additionally, resource requirements 

for the MAVNATT Virtualization Module prototype are identified according to the scale 

of the operational network being virtualized.  

Chapter V: Virtualization Module Prototype Testing. This chapter demonstrates 

the virtualization component’s effectiveness in the automatic creation of a virtual network. 

It also provides an assessment of how effectively the prototype met the functional 

requirements of the MAVNATT Virtualization Module, as well as the thesis objectives.  

Chapter VI: Conclusion and Future Work. This chapter discusses the 

successes and limitations of the MAVNATT Virtualization Module’s prototype and 

identifies functional areas that require further refinement in order to mitigate those 

limitations.  
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II. BACKGROUND AND PREVIOUS WORK 

A. OVERVIEW 

MAVNATT is a system that creates a fully partitioned, stateful, and virtualized 

instance of an operational network, based on the input of an open-format graph file, in 

order to create a virtual environment for network administrator training. MAVNATT’s 

functionality is achieved through the integration of three discrete components: a Mapping 

Module, an Awareness Module, and a Virtualization Module. As this thesis focuses 

specifically on the Virtualization Module, only a brief description of the remaining 

modules is included here; a more thorough exploration of the MAVNATT architecture is 

included in McBride’s thesis by the same title [1, p. 58]. Figure 1 depicts the inter-

relation between the Mapping, Awareness, and Virtualization modules, as well as the 

progression from the live, or operational network, to the resulting virtual network. The 

diagram further depicts that the operational network feeds the Mapping Module and the 

Virtualization Module feeds the virtual network. The interface for the monitor function is 

provided by both the Mapping and Awareness modules, and is displayed within the 

Virtualization Module GUI; the train function is also provided by sub-components of the 

Virtualization Module.  
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Figure 1. MAVNATT Conceptual Model [1, p. 58] 

B. MAPPING MODULE 

In the context of network operations, mapping provides the network administrator 

with an overview of a network by representing its physical layout, interconnectivity of 

devices, and composition. The MAVNATT Mapping Module provides this capability by 

automatically enumerating the hosts in an operational network and their associated 

connectivity [1, p. 33]. The module outputs an open-format graph file with elements 

representing each host on the operational network, and attributes for each of the hosts. 

These attributes nominally include: OS, number and type of each network connection, 

Internet Protocol (IP) and media access control (MAC) address of each connection, next-

hop device to determine network topology, as well as other system attributes and states as 

might be deemed necessary by the system designer [2, p. 58]. After the Mapping Module 

has populated the open-format graph file, it may receive periodic network status updates 

from the Awareness Module to reflect changes to the network topology, for instance. 

Once the graph file is created, it is then presented to the Virtualization Module to be 

parsed for creation of a virtual copy of the operational network.  

C. AWARENESS MODULE 

The MAVNATT Awareness Module provides visualization of the operational 

network topology and fault detection capabilities in order to provide situational 
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awareness to the network administrator [1, p. 39]. This module employs active 

monitoring techniques to determine the reachability of each host on the operational 

network, and reflects topology changes in the network. It periodically updates the 

MAVNATT Mapping Module [1, p. 59] to provide the network administrator with 

graphical and alert-based situational awareness of the network.  

D. VIRTUALIZATION MODULE 

The MAVNATT Virtualization Module bears responsibility for parsing the open-

format graph file input, then creating a virtual instance of the operational network based 

on the attribute data contained therein. To that end, this research focuses on the 

development and integration of four sub-components within the Virtualization Module: 

the Virtualization Module Program (VMP), the virtualization hypervisor, the network 

simulator, and the wide area network (WAN) emulator. 

1. MAVNATT Virtualization Module Program   

The MAVNATT VMP is a Python-based program that parses the open-format 

graph input file provided by the Mapping Module to determine the number of nodes, the 

type of device represented by each node, and each node’s next hop. It then uses the APIs 

for the hypervisor and network simulator to create the virtual network. The VMP utilizes 

the Python Tkinter GUI, which generates a graphical representation of the virtual 

network as seen in Figure 2. Additionally, this GUI provides the network administrator 

with functionality to interface the VMs and virtual network devices on the virtual 

network.  
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Figure 2. MAVNATT Tkinter GUI Displaying Network 
Nodes [1, p. 72] 

The MAVNATT GUI provides the network administrator with the following 

capabilities: 

 Allows the execution of a new mapping process of the operational 
network by calling the Mapping Module, which enumerates the devices 
and their associated connectivity. Upon successful execution of the 
mapping process, an open-format graph file is populated with the node 
data gathered from the operational network, and is then ready to be used as 
an input into the Virtualization Module. Each time the VMP calls the 
Mapping Module, it pulls the latest updates from the Awareness Module 
before building a new open-format graph input file. 

 Provides the ability to load a previously populated open-format graph file 
to create a virtualized instance of a network. This feature eliminates the 
necessity for MAVNATT to have live connectivity to the operational 
network and provides the network administrator with greater flexibility in 
conducting training operations in austere environments. 

 Creates a graphical representation of the operational and virtual networks’ 
topologies, including the status of the network links and reachability of 
each node within the networks. The input received from the MAVNATT 
Awareness Module provides the link and node status that is displayed 
within the Virtualization Module GUI.  
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2. MAVNATT Virtualization Hypervisor 

McBride’s thesis established an architecture and framework for MAVNATT, 

including the evaluation of various virtualization hypervisors and network simulators for 

use in the Virtualization Module. This evaluation resulted in the selection of the 

VirtualBox® hypervisor due to its wide range of OS support, ready availability of APIs 

supporting integration with other applications, open source availability, and exportability 

of virtual device images to other virtualization products [1, p. 46]. Figure 3 shows the 

VirtualBox user interface in a typical implementation. 

 

 

Figure 3. VirtualBox GUI [3]  

The VirtualBox hypervisor officially supports many commonly used OSs, 

however it was developed to provide a generic x86 virtual environment and, as such, may 

run any x86 compatible OS. Officially supported guest OSs include: 
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 Windows 2000/XP, Server 2012/2008/2003, Vista, Windows 7/8, 
Windows NT 4.0, Windows 95/98/ME, Windows 3.x, DOS 

 Mac OS X, through version 10.11 

 Linux 3.x/2.6/2.4  

 Solaris 11/10  

 FreeBSD, OpenBSD  

 OS/2 Warp 4.5  

The MAVNATT virtualization hypervisor provides the capability of creating a 

VM corresponding to each computer node in the operational network, as discovered by 

the MAVNATT Mapping module. Using the open-format graph file received from the 

Mapping Module, the hypervisor analyzes each network node for attributes such as OS 

version, information about system resource allocation including: Hard Disk Drive (HDD) 

size, random access memory (RAM) allocation, and number of processors. It also takes 

into account network interface settings such as: IP address, subnet mask, default gateway, 

domain name system (DNS), and MAC address.  

The Virtualization Module uses the MAVNATT virtualization API to create VMs 

corresponding to each OS version within the operational network. These VMs are cloned 

by the VMP, then loaded into the hypervisor as virtual machine disk (VMDK) files from 

a preconfigured gold disk of the OS that resides within the MAVNATT Virtualization 

Module Image Repository (VMIR). Since MAVNATT is ultimately intended for use on 

the Marine Corps Tactical Data Network (TDN), the standard OS versions and builds 

typically used on that network can be included in the VMIR. In an environment with a 

well-controlled configuration management process, such as the TDN, achieving OS 

parity between the operational network and the virtual network is a realistic goal for 

MAVNATT to achieve. Each image included in the VMIR has a corresponding VMDK 

file that is used by the virtualization hypervisor to create the VMs with which network 

administrators will interface during training scenarios. Once a VM is created, the 

Virtualization Module uses the hypervisor’s API to overlay attributes specific to each 
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entity based on operational network data received in the open-format graph file, as 

captured by the MAVNATT Mapping Module.  

Upon creation of the virtual network, the MAVNATT Virtualization Module 

provides network administrators the flexibility with which to interface each VM in order 

to affect additional customization steps. The MAVNATT Virtualization Module uses the 

hypervisor’s and network simulator’s APIs to leverage the native console functionality of 

both tools. This functionality allows the network administrator to modify the settings of 

all VMs and network devices through the MAVNATT GUI, and to load any additional 

software that may be required in order to duplicate the operational network as closely as 

possible. 

3. MAVNATT Network Simulator 

A MAVNATT network simulator provides network connectivity between VMs 

within the MAVNATT Virtualization Module, as well as the ability to create the routers 

and switches discovered by the Mapping Module and captured within the open-format 

graph file. The simulator interfaces directly with both the virtualization hypervisor and 

the MAVNATT Virtualization Module program. MAVNATT uses the network 

simulator’s API to assign IP addresses to each live interface on the modeled devices 

according to the associated data contained within the open-format graph file. In this 

prototype, the Virtualization Module uses an EXtensible Markup Language (XML) based 

GraphML input file as its input, which includes the IP addresses of each router’s 

interfaces. The Virtualization Module uses the network simulator’s API to assign the IP 

address to the virtual router’s respective interfaces. Each IP network to which the virtual 

router is connected is advertised within the routing protocol configuration of the router. 

The routing protocol then dynamically builds the routing table and establishes layer 3 

connectivity between the virtual network nodes. In MAVNATT’s development end state, 

the Mapping Module will provide the topology information to the Virtualization Module.  

McBride’s thesis selected the open-source Graphical Network Simulator–3 

(GNS3), created primarily to provide a training platform for Cisco and Juniper network 

devices, as the network simulator used by MAVNATT [4]. GNS3 is written in the same 
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Python programming language as MAVNATT and has extensive API availability, which 

makes it a strong choice for use in the MAVNATT Virtualization Module. Additionally, 

GNS3 provides the ability to emulate supported Cisco devices running a Cisco 

internetwork operating system (IOS) image that has been hardened to achieve Defense 

Information Systems Agency (DISA) Security Technical Implementation Guidelines 

(STIG) compliance [5]. GNS3 provides the flexibility to interface with both physical and 

virtual devices, both within and outside of the GNS3 environment, which will allow 

MAVNATT to incorporate network devices that are not natively supported by the GNS3 

platform.  

The MAVNATT Mapping Module can transfer a .cfg configuration file from a 

network device on the operational network directly to GNS3, where the file can then be 

loaded by the corresponding virtual network device upon system boot [4, p. 33]; this 

capability enables configuration parity of network devices between the operational and 

virtual networks. GNS3 also integrates natively with VirtualBox, which eliminates the 

need for further complexity within the MAVNATT Virtualization Module design. Figure 

4 depicts the GNS3 interface loaded with a GraphML input file representing the network 

devices from the MAVNATT conceptual network. 
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Figure 4. GNS3 with the MAVNATT Conceptual Network Devices 

4. MAVNATT WAN Emulator 

The Marine Corps’ TDN typically includes satellite communication (SATCOM) 

links, as well as other sub-megabit per second (Mbps) WAN links in its topology [6]. As 

such, there is a need to emulate these high-delay, low-bandwidth circuits within the 

MAVNATT virtual network in order to accurately mimic the functionality of the 

operational network. To this end, the MAVNATT Virtualization Module employs a 

WAN emulator to integrate with the network simulation component and create these 

specialized WAN link characteristics as dictated by the operational network’s topology.  

In the MAVNATT implementation of WANem, the emulator is bridged between 

two virtual routers, as depicted in Figure 5, to provide the MAVNATT Virtualization 

Module the ability to mimic WAN characteristics found in the operational network. For 

example, each network hop from a terrestrial source to a geosynchronous satellite, then 

back to another terrestrial destination, introduces a delay of up to 500 milliseconds into 

the circuit by the time a packet makes a round trip [7]. This latency can significantly 

impact the performance of a network, and without factoring this characteristic of the 

operational network into the virtual environment, a performance parity between the 

networks cannot be achieved. 
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Figure 5. MAVNATT Implementation of a WANem Appliance 

5. Integration with the MAST Training Tool 

Central to MAVNATT’s functionality goals is the ability to allow network 

administrators to conduct scenario-based cyber training in an environment that is 

completely partitioned from the operational network [1, p. 39]. The malicious activity 

simulation tool (MAST) was designed to provide such training through the use of 

malware mimics (MM), as described in the NPS thesis by Nathaniel Hayes [8]: 

MAST, a software program under development at NPS, mimics the 
behavior and impact of network-based malware in an effort to train the 
administrators of operational DOD networks both to respond to the threats 
such materials present to their networks and to assess their competence in 
recognizing and responding to such threats.[p. i] 
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Figure 6. Simplified MAST Architecture [9, p. 27] 

As depicted in Figure 6, the MAST architecture consists of a Scenario Generation 

(SG) server, a Scenario Execution (SE) server, and multiple MAST clients; each of these 

roles is an individual Java program designed to run on a Microsoft Windows 

environment, though not limited to that environment. The SG server maintains a database 

of scenario modules, which are developed by trainers with experience in ethical hacking 

or Red Team disciplines. Each module mimics a specific behavior, such as a network 

scan or a ping; multiple modules are assembled together by the trainer to create a training 

scenario file. The scenarios are then deployed to the SE server, which is typically located 

remotely from the SG server at the site of the MAST training. The SE server pushes the 

scenarios to the appropriate MAST clients to execute each scenario. The SE server also 

maintains a local scenario database and can operate independently from the SG server, 

following the initial deployment of scenario files to the SE server or creation of such files 

locally. 
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A related NPS thesis by Ray Longoria discussed an example of a typical MM 

within a MAST scenario: 

In this scenario, a pop-up window appears on the user’s desktop. The 
window is a simple image that performs no action other than recording the 
user’s response. The pop-up window asks the user if they would like to 
execute or download a specific file. The user’s actions are recorded in the 
SE Server’s database.  

The objectives of this scenario are to see how the users respond to the 
download question and if any users report the events to a system or 
network administrator. Such events may be characteristic of a phishing 
attack. The results of the training can let a unit know where to focus future 
training resources. [9, p. 29] 

VMDK files of the SG, SE, and MAST client machines are included in the 

Virtualization Module Image Repository (VMIR), which allows the MAVNATT 

Virtualization Module to create a virtual MAST environment. The Virtualization Module 

uses the MAVNATT hypervisor’s API to provide the network administrator with an 

interactive console session with the MAST servers and clients. Once a GraphML input 

file representing a MAST environment has been loaded into MAVNATT, the MAST 

administration and scenario functionality are identical to the physical installation of 

MAST.  

E. SUMMARY 

This chapter provided a general overview of MAVNATT and its three modules, 

and their relationship to this research. Chapter III will discuss the functional requirements 

of the Virtualization Module, and how the prototype system design aims to meet those 

requirements. Additionally, it thoroughly discusses the Virtualization Module’s 

components. 
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III. SYSTEM REQUIREMENTS AND DESIGN 

A. OVERVIEW 

The previous chapter provided a basic overview of the MAVNATT system, as 

well as an introduction to the components of its Virtualization Module. In this chapter we 

more thoroughly discuss those components and how they address the MAVNATT 

system’s design requirements. The Virtualization Module functional requirements 

defined in McBride’s thesis directly influenced the framework of this prototype design 

and formed the basis for the testing described in Chapter V. 

B. VIRTUALIZATION MODULE PROTOTYPE REQUIREMENTS 

As outlined in McBride’s thesis, the main objective of the Virtualization Module 

is to integrate MAVNATT with a hypervisor that can support the virtualization of a 

network topology that is logically partitioned from the operational network. The 

MAVNATT Virtualization Module prototype described here was developed to meet the 

following functional requirements identified in the thesis [1, p. 60]: 

Requirement: The module must communicate with the Awareness Module. Specifically, 

it should receive a network topology to virtualize and return a set of connectors to those 

virtual devices. 

Solution: We discussed in the previous chapter that the MAVNATT Awareness Module 

was not yet developed at the time this research was conducted, therefore a functional 

demonstration of the Awareness-Virtualization Module interface cannot be provided at 

this time. In lieu of actual inputs from either of the Mapping or Awareness Modules, this 

prototype makes use of a static GraphML file that represents a conceptual network. The 

prototype is able to read the node and edge object data within the GraphML input file, 

and then control the hypervisor and network simulator through their respective APIs to 

build the corresponding virtual devices. The prototype is also able to configure those 

devices according to the attribute data contained within the file for each node and edge. 

Both VirtualBox and GNS3 make their entire feature sets available to developers through 

their respective API’s [2] [4]; as such, any device setting or state can be passed from the 
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VMP to the hypervisor or network simulator as a GraphML node or edge attribute. This 

capability provides excellent flexibility for future integration with the Awareness and 

Mapping Modules.  

Requirement: The module must ensure the virtual devices are unable to interfere with 

the operational network. 

Solution: The MAVNATT Virtualization Module creates a virtual copy of the 

operational network. The resulting virtual copy is completely partitioned from the 

operational network, with one exception: the machine hosting the Virtualization Module 

is configured with an IP filtering policy [10] that restricts all outbound traffic from the 

virtual network. A single permit rule enables the Virtualization Module to communicate 

with the Mapping and Awareness Modules; these modules are installed on a host within 

the operational network. This IP filtering policy enables the communication between the 

virtual and operational networks that is necessary for MAVNATT functionality, while 

eliminating the threat of the module interfering with the operational environment. 

Requirement: The module must infer a virtual device whenever a full specification is 

not available. 

Solution: A key feature of the prototype’s design is the Virtualization Module image 

repository (VMIR), a directory of VMDK and IOS files used to create virtual machines 

and virtual network devices within the Virtualization Module’s environment. The virtual 

images are baseline copies of OS installations. The VMDK files are loaded into 

VirtualBox to create VMs. The IOS files are loaded into GNS3 to create virtual network 

devices. The VMP then applies the node attributes to the VM or virtual network device 

through the APIs of the hypervisor and network simulator based upon the attribute data 

contained within the device’s corresponding GraphML node. If a particular node contains 

no data for an attribute, no action is taken to configure that attribute in the VM or virtual 

network device. If additional configuration is required for the VM or network device, the 

network administrator has the ability to establish a console session with the device, 

through the VMP GUI, to apply additional settings manually in the absence of an 

automatic process.  
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C. SYSTEM DESIGN 

The previous chapter discusses the general design of the MAVNATT 

Virtualization Module and provides a general overview of how the Virtualization Module 

Program (VMP), the virtualization hypervisor, the network simulator, and the WAN 

emulator all integrate to create a virtual network from a GraphML input. This chapter 

discusses in greater depth how the Virtualization Module leverages each of those four 

sub-components to meet its functional requirements. Each sub-component of the 

Virtualization Module, along with the static GraphML input file used as an input to the 

system, is thoroughly discussed in this chapter. 

1. GraphML Input File  

When the MAVNATT system reaches its development end-state, the 

Virtualization Module will have the capability of manually executing a mapping process 

from the Mapping Module through the VMP GUI. This process will be used as an input 

to build the initial virtual copy of the network, as well as to synchronize the virtual 

network with the latest reachability data and topology deltas from the operational 

network as provided to the Mapping Module by the Awareness Module. Since this thesis 

was conducted concurrently with the development of the Mapping Module, we developed 

a static GraphML file, populated with the elements and attributes of a conceptual 

network, to serve as an input to the system.  

The VMP uses several elements of the GraphML input file to store operational 

network data received from Mapping and Awareness Modules. A node object represents 

each computer and network device and an edge object represents each network link. Each 

of these node and edge objects is assigned an ID, a descriptive value, and an X & Y 

coordinate that determines the object’s position on the network diagram. In addition, the 

object can be configured with various attributes to describe characteristics that can be 

stored as Boolean, int, long, float, double, or string data types [11]. An edge object 

typically possesses source and target attributes to establish a connection between two 

nodes; this feature of the GraphML language is used by the VMP to create the network 

topology. These attributes are stored for each object as data keys and can be set arbitrarily 



 20

by the system designer. Figure 7 shows an example of a simple GraphML file with six 

defined nodes—some with data keys and others without—and associated edges between the 

nodes. 

 

 

Figure 7. GraphML Attributes [11] 

The GraphML schema can be extended to add any data key that is needed in order 

to further define each node or edge. The key values are defined at the top of the 

GraphML object and can be contracted or added to as needed. Specifically, each node is 

an object and has an associated mapped graphical icon associated with it for the GUI. As 

the GraphML input file is read into MAVNATT at run time, NetworkX combines with 

the python Tkinter library to draw the icons for each node, then connects lines between 

specific nodes based upon the edge objects in the GraphML input file.  

Each node must be defined as a type of object: computer, router, or switch. Each 

key has an attribute name defined as attr.name and an attribute type defined as attr.type. 
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An ID is included for each attribute, which corresponds to a data key entry. This pairing 

associates a data value with a specific attribute for either a node or an edge, as specified 

by the for value. The following example shows a source IP address stored as a string 

value in an edge attribute. It also shows that each key can be assigned a for value of 

either edge or node: 

<key attr.name=“sourceIP” attr.type=“string” for=“edge” id=“d1” /> 

<data key=“d1”>10.0.0.1</data> 

Each edge can be constructed as shown in this example: 

<edge source=“switch.syscon” target=“ Windows7_A “> 

<data key=“d6”>192.168.1.2</data> 

<data key=“d7”>eth0</data> 

<data key=“d8”>192.168.1.21</data> 

<data key=“d9”>eth1</data> 

</edge> 

This edge shows a network link from a switch at 192.168.1.2 to a machine at 

192.168.1.21. 

Each node is constructed as shown in this example: 

<node id=“Windows7_A”> 

<data key=“d0”>200</data> 

<data key=“d1”>250</data> 

<data key=“d2”>computer</data> 

<data key=“d3”>Windows7</data> 

<data key=“d10”>C:\MAVNATT\VMIR\Windows7_A.vmdk</data> 

</node> 
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This node shows a Windows 7 computer, as well as the VMIR directory and the 

specific VMDK file the Virtualization Module will use to clone it. 

2. Virtualization Module Program  

The MAVNATT Virtualization Module Program (VMP) is a Python program 

with a Tkinter GUI. Within the GraphML input file, each network device is represented 

as a node and each network link is represented as an edge. The VMP parses the GraphML 

input file in order to categorize each node and edge represented within the file, along with 

its attributes. It then uses the API of either the hypervisor or the network simulator to 

create a virtual machine or a virtual network device, respectively. Once a GraphML input 

file has been populated with the network nodes, edges, and associated attributes, it needs 

to be processed in order to create the virtual network. The VMP reads the GraphML input 

file to first draw the nodes and edges in the MAVNATT GUI. This is accomplished using 

the NetworkX library within the Python/Tkinter library for the GUI. A validation routine 

runs to ensure that the minimum information needed in order to virtualize is provided in 

the GraphML input file; at a minimum, each node must include the device type attribute. 

If no value is contained for this attribute, no action is taken to virtualize the device and an 

exception is thrown; the administrator is then prompted to manually enter the device type, 

which results in the creation of a generic device in the virtual network. The administrator 

can then interface directly with the device to perform additional customization following 

the virtualization process.  

3. Virtualization Hypervisor 

The MAVNATT Virtualization Module employs the VirtualBox hypervisor to 

create the VMs within the virtual network. VirtualBox provides an extensive software 

development kit (SDK), which allows its Main API to control the entire VirtualBox 

feature set [2, p. 21]. For this proof of concept, the MAVNATT VMP uses the 

VirtualBox API functionality to perform the following actions as it creates virtual 

machines from the GraphML input file: 

 Reads the OS type and then creates a VM clone from the corresponding 
VMDK file in the Virtualization Module Image Repository (VMIR) 
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 Reads the hostname, IP address, MAC address, and IP address of the next-
hop device or devices to determine the network topology 

 Applies these attributes to the VM, then moves to the next VM or network 
device in the GraphML input file 

In the MAVNATT development end state, the VMP will have the capability of 

passing any attributes supported by the VirtualBox platform [2, p. 52] from the GraphML 

input file provided by the Mapping and Awareness Modules to the VM clone. More 

specifically, if a setting or configuration of a computer residing on the operational 

network can be captured by the Mapping and Awareness Modules it can be reproduced 

within the VirtualBox hosted VM in the virtual network. This provides great potential for 

achieving near-parity between the operational network and its virtual copy. 

An inherent characteristic of a hypervisor is that the RAM requirements of the 

individual VMs place a corresponding demand upon their host machine. Figures 8 and 9 

illustrates this characteristic the first figure shows a test host machine’s baseline RAM 

utilization level at 2.2GB. Upon starting a single Windows 7 VM with 2GB of allocated 

RAM, the RAM utilization of the host machine correspondingly increases to provide the 

VM with the allocated resources.  

While this memory usage did not adversely impact the implementation of our 

prototype system, it will require additional consideration as MAVNATT is used to map 

large-scale operational networks.  
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Figure 8. VirtualBox Virtual Host Machine Baseline RAM/CPU 
Utilization 
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Figure 9. VirtualBox Virtual Host with Server 2012, 2048MB RAM 
Allocated  

4. Network Simulator 

The MAVNATT Virtualization Module uses the GNS3 network simulator to 

provide virtual TCP/IP connectivity between VMs in the virtual network. After the 

GraphML input file is validated by the VMP the user can click the virtualize button. This 

click event takes the GraphML data and builds the necessary supporting files for the 

GNS3 project to be created. These GNS3 files include the new project directory, the 

project.gns JavaScript Object Notation (JSON) file, the subfolder of dynamips for 

network devices, and a virtualmachines subdirectory for the VMs created in the project. 

Within the dynamips directory, there is a subdirectory called config, where the Cisco 

IOS.cfg files are generated based on network device parameters passed by the GraphML 

input file. GNS3 uses an internal program to clone network devices with the CLI. After 

the cloned image is created, the IOS.cfg file is added for specific settings for each 
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network device. After creating the underlying project files, the VMP launches GNS3 

from the CLI and passes the project.gns file to the program at run time. 

In the process of constructing the nodes and edges from the GraphML input file, 

GNS3 builds a JSON file to represent each device within the GNS3 project. Figure 10 

shows how GNS3 uses this file to represent the network edges for the GraphML input 

file, with topological relationships between nodes in the prototype network. 

 

  

Figure 10. GNS3 Node and Edge Relationship 

5. Wide Area Network Emulator 

WANem is an application that runs on a Knoppix Linux distribution and is 

configured through a web GUI. The WANem installation is initially loaded into the 

VirtualBox hypervisor as a bootable International Organization for Standardization (ISO) 
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image file, then exported to the VMIR as a VMDK file. This portability allows a number 

of WANem appliances to be added to a virtual network, as dictated by the characteristics 

of the operational network. In the MAVNATT implementation of WANem, the network 

administrator must manually configure the desired WAN characteristics for each link due 

to the unavailability of a suitable API. Characteristics that are commonly found in the 

tactical network environment can be saved as WANem rule sets, and then loaded for 

rapid deployment of an appliance to emulate a particular type of link.  

The MAVNATT Virtualization Module incorporates the WANem appliance into 

its VMIR in order to provide the capability of emulating various WAN characteristics 

that may exist within the operational network. These characteristics include network 

delay, packet loss, packet corruption, disconnections, packet reordering, jitter, etc. [12]. 

Figure 11 shows the wide range of configurable parameters provided by WANem, which 

allows us to duplicate virtually any combination of circuit characteristics in the 

Virtualization Module.  
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Figure 11. WANem Appliance GUI  

6. Physical-to-Virtual Process 

a. P2V Overview 

Although not incorporated into this prototype’s development, another design 

consideration for the Virtualization Model is to provide the ability to perform a physical-

to-virtual (P2V) conversion of the server and workstation machines within the 

operational network. The P2V process is common in the migration of a physical 

environment to a virtual environment, and is a generic term for capturing the complete 

data and state of a computer, then creating a file from that data which can be imported 

into a virtualization hypervisor as a virtual machine [13]. In the P2V process, all of the 
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physical drivers used by the source machine are replaced with virtual drivers, which 

preserves the original functionality of the system.  

b. P2V Benefits 

Although P2V conversion deviates from the original design intent of the 

MAVNATT Virtualization Module, which is the use of an open-format graph file as a 

model of an operational network, there may be several benefits to incorporating P2V into 

the MAVNATT architecture. P2V products such as the VMWare vCenter Converter can 

output a virtual machine file which results in a virtual instance of a server or workstation 

machine that is functionally identical to the physical version [14]. Additionally, 

Microsoft offers the native P2V tools Microsoft Virtual Machine Converter (MVMC) and 

Disk2vhd for use in converting Microsoft server and workstation OSs, respectively [15].  

The primary benefit provided by P2V tools is the functional parity between the 

operational and virtual networks that result from the P2V process. Whereas the current 

VMIR-based VM cloning process utilized by MAVNATT requires network administrator 

intervention to install software applications and customizations that deviate from the gold 

disk builds, the P2V process copies each physical machine from the operational network, 

then creates an exact copy in the virtual network. Figure 12 provides a graphical 

depiction of the VMWare vCenter Converter, and the general P2V concept. 
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Figure 12. VMWare vCenter Converter Concept [14]  

a. P2V Drawbacks 

Although the P2V process provides an exact copy of the physical environment 

within the virtual network, the main drawback is that the process can take an hour or 

multiple hours for each device [16]. MAVNATT is intended to be used in tactical 

environments, and as such must be a lightweight solution, meaning that the P2V process 

would not be feasible as a deployable design. In a more static training environment, the 

P2V process could provide functionality enhancements over the process provided by the 

standard MAVNATT architecture. Nonetheless, if used by the supported organization 

well in advance to field activities a significant database of the organization’s systems 

could be established as part of the library of virtual machines available for instantiation 

upon deployment through the Virtualization Module Image Repository. 
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D. SUMMARY 

This chapter discussed the MAVNATT Virtualization Module functional 

requirements, as identified by McBride’s thesis, and the prototype system design for 

meeting those requirements. Additionally, we described the module’s components and 

how each of them is integrated within the system’s design. The next chapter provides a 

thorough description of how the prototype system implements each of the components to 

achieve the required functionality.  
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IV. SYSTEM IMPLEMENTATION 

A. OVERVIEW 

The previous chapter discussed the design of the MAVNATT Virtualization 

Module, and provided a detailed description of how the Virtualization Module Program 

(VMP), the virtualization hypervisor, the network simulator, and the WAN emulator were 

integrated to derive a virtual network from a GraphML file. This chapter discusses in 

greater depth how each of those four sub-components were configured to meet the 

Virtualization Module’s functionality requirements.  

B. COMPONENT IMPLEMENTATION 

1. Prototype Design 

The Virtualization Module prototype was developed, implemented, and tested in 

the following environment: 

 OS: Microsoft Windows 10 

 Host machine: Intel Core i7-2820QM processor @2.4GHz, 64-bit, x86 
architecture, 32GB installed memory (RAM) 

 Graphical file format: GraphML, version 1.0 

 Programming language: Python, version 3.5.0 with NetworkX software 
library, version 1.10  

 GUI: Tkinter, version 8.6.4  

 Integrated development environment (IDE): Python IDLE, version 3.5.0 

 Virtualization hypervisor: Oracle VirtualBox, version 5.0.10 r104061 

 Network simulator: GNS3, version 1.3.11  

 WAN emulator: WANem, version 3.0 on Knoppix Linux 6.7.1  
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2. Virtualization Module Conceptual Network 

The Mapping and Awareness Modules of MAVNATT are undergoing 

development concurrently with the Virtualization Module. As a result, this prototype 

makes use of a static GraphML file representing a conceptual network. The Virtualization 

Module conceptual network for this prototype is comprised of three separate IP networks: 

two LANs, and one WAN. Each of the LANs includes a router; the two routers are 

connected to each other by a WAN link to simulate a geographical separation between 

the networks, and to provide an opportunity to inject WAN characteristics into the 

prototype. The LANs are each populated by the following devices: an Ethernet switch, a 

Windows Server 2012 server, a Windows 7 workstation, an Ubuntu Linux server, and an 

Ubuntu Linux desktop, as depicted in Figure 13. This conceptual network is of sufficient 

scale to satisfy the MAVNATT Virtualization Module functional requirements at this 

point in the project’s development.  
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Figure 13. MAVNATT Virtualization Module Conceptual Network 

3. GraphML Input File 

In the design phase of the Virtualization Module, we developed the conceptual 

network in order to demonstrate the prototype’s ability to meet the MAVNATT 

functional requirements. In the implementation phase, the first step was to manually 

generate a GraphML input file to represent the nodes, edges, and attributes of the 

conceptual network to simulate input from the MAVNATT Mapping Module. Figures 14, 

15, and 16 include the GraphML input file code that represent the conceptual network. 

Each of the node objects is assigned basic attributes including OS type and IP address, 

and each of the edge objects is assigned connection point attributes.  
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Figure 14. Conceptual Network GraphML Input File pages 1–2 
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Figure 15. Conceptual Network GraphML Input File pages 3–4 

 

 



 38

 

Figure 16. Conceptual Network GraphML Input File pages 5–6 
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4. Virtualization Module Program  

The VMP is implemented using Python version 3.5.0 and Tkinter version 8.6.4 on 

the host machine and from these, the MAVNATT.py file is loaded to start the program. 

The VMP reads in the conceptual network’s GraphML input file at run time, and then 

parses the node and edge object data against the GraphML schema [17] for validation 

purposes. After a successful validation of the GraphML input file, the VMP uses the node 

and edge data to draw the network diagram in the Tkinter GUI, as seen in Figure 17.  

 

 

Figure 17. VMP Rendering of Conceptual Network GraphML Input File 

The VMP inventories the nodes of the GraphML file to determine the type, count, 

and configuration of VMs that need to be created, and then executes the create and the 

modify commands within VirtualBox through its API to clone and customize each VM.  

At this point, the administrator uses the VMP’s context-sensitive menu to execute 

the virtualize function of the program. The VMP then builds an associated topology.gns3 

JSON topology file from the GraphML input file. The nodes, edges, and their attributes 
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are inventoried, and then corresponding VMs and virtual devices are created within the 

topology.gns3 JSON file. Figure 18 shows an example of the JSON file for a VM that 

was cloned by the VMP. The hexadecimal globally unique identifier (GUID) in the file 

corresponds to an actual VM clone within VirtualBox, and is used by GNS3 to start the 

corresponding VM.  

 

Figure 18. JSON Excerpt from the Topology.gns3 File 

5. Virtualization Hypervisor 

Upon initial installation of VirtualBox version 5.0.10 the Virtualization Module’s 

VMIR is populated with the VMDK files for Windows 7, Windows Server 2012, Ubuntu 

Desktop, Ubuntu Server, and the WANem appliance. The VMP uses each of these 

images as the cloning source for each mapped VM. The cloning and initial configuration 

of each of the VMs takes place before they are powered up the first time through the 

VirtualBox API. After the VMs are booted up, the VirtualBox user interface is used to 

verify that each machine has booted properly. 
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For the prototype system, the 32GB of RAM installed on the host machine in the 

development environment was more than adequate. As MAVNATT scales to virtualize a 

greater number of computers and network devices on a true operational network, a more 

robust hardware platform will be required. An example commercial off the shelf (COTS) 

solution is the Dell PowerEdge R420xr ruggedized server [18], which provides the 

following specifications: 

 Form factor 1U rack, 20” rack depth 

 Processor sockets: 2 

 Memory: up to 384GB (12 DIMM slots); 4GB/8GB/16 DDR3 up to 
1600MT/s 

 Drive bays: up to four 2.5” hot-plug SSD (SAS or SATA) 

 Weight: 26.2lbs 

 MIL-STD 810G compliant for temperature, shock, vibration and altitude 

In an example use case, employing this server platform with 384GB of RAM and 

running Windows Server 2012 with the recommended 16GB of RAM allocated to the 

host machine [19] would leave 368GB of RAM available for allocation to VMs and 

virtual network devices. In this configuration, the system would have the capacity to 

conservatively accommodate 100+ 64-bit Windows 7 VMs with the minimum RAM 

allocation of 2GB each [20].  

6. Network Simulator 

Version 1.3.11 of the GNS3 network simulator is installed on the host machine to 

provide the network connectivity component of the Virtualization Module. As the VMP 

issued a command through the API for GNS3 to load and start the file, the network 

simulator creates the corresponding topology within its GUI and starts its own network 

devices. GNS3 then starts the VirtualBox VMs through its native integration component 

and establishes network connectivity between the devices. Each node on the GNS3 

topology map turns to green indicating that it is reachable.  
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7. Wide Area Network Emulator 

The WANem emulator is available as a downloadable ISO file that VirtualBox 

can boot from directly. This ISO was initially loaded into VirtualBox, then exported as a 

VMDK file for inclusion in the VMIR. The WANem node within the GraphML input file 

results in a clone operation of the WANem VMDK file within the hypervisor; the 

network administrator then manually configures the desired settings. Alternatively, the 

capability to load a previously configured rules set for the emulator exists, which would 

provide more efficient provisioning of WANem appliances.  

Once WANem completes its boot sequence, the administrator opens an LX 

Terminal session within the Knoppix OS, then enters the shell command terminal, as 

depicted in Figure 19.  

 

  

Figure 19. WANem Bridge Group Configuration 
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This configuration adds the two WANem network interfaces into a bridge group, 

assigns an IP address, subnet mask, and default gateway to the bridge, and then starts it. 

At this point, the administrator interacts with the WANem web interface to set the link 

parameters manually; a WANem rule set could also be loaded at this point in the process. 

Since the WANem appliance is bridged between two routers in the MAVNATT 

implementation, only one interface needs to be configured with customized parameters. 

After applying the desired link parameters to the WANem interfaces, the emulator begins 

passing the network traffic with the characteristics defined by the administrator. 

C. SUMMARY 

This chapter provided a detailed discussion of the implementation steps taken to 

integrate the MAVNATT Virtualization Module’s components in order to establish a 

functioning prototype system. It discussed the role each of the components plays, as well 

as the environment within which the prototype was developed. In the next chapter, this 

prototype is tested against each of the MAVNATT functional requirements, and 

evaluated for how effectively the requirements are met. 
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V. VIRTUALIZATION MODULE PROTOTYPE TESTING 

A. OVERVIEW 

The previous chapter covered the prototype implementation of the MAVNATT 

Virtualization Module and provided a detailed description of each sub-component’s 

configuration and functionality. This chapter takes the functional requirements and 

design objectives discussed in Chapters III and IV, and employs unit testing 

methodology [21] to evaluate how well the prototype met each of them. Also 

discussed are the resources that were required to implement the prototype and sub-

components of the Virtualization Module. Finally, we describe how the Virtualization 

Module scales through the use of the GNS3 remote server and the deployment of multiple 

instances of the VirtualBox hypervisor, and how the host hardware is a critical 

consideration in MAVNATT’s scalability.  

B. UNIT TESTING 

1. Validation Routine and Network Topology 

Test: Does the VMP run a schema validation routine against the GraphML input file and 

then accurately draw the corresponding network topology within Tkinter canvas? 

Result: Upon loading the GraphML file into the prototype, the VMP references the XML 

Schema Definition (XSD) file [22] to ensure the file’s compliance with the format. In 

Unit Test 1, the Virtualization Module conceptual network GraphML file passed the 

validation routine, and the VMP accurately utilized the Python NeworkX library to draw 

the corresponding network topology within Tkinter, as shown in Figure 20. We 

successfully tested the VMP validation routine to show that, if the GraphML file does not 

pass the schema validation, it will not load into the Tkinter canvas and an error routine 

executes. To test a counter example of the validation routine, we loaded another copy of 

the conceptual network’s GraphML file that was intentionally non-complaint with the 

XML schema, and received the expected error. 
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Figure 20. VMP Network Topology within Tkinter from GraphML 
Input File  

2. VM Cloning 

Test: Does the VMP accurately clone and configure VMs within VirtualBox based on 

OS type and count within the GraphML input file? 

Result: The VMP is able to utilize the VirtualBox API to clone any of the OS versions 

represented within the VMIR. The VMP uses the VboxManage.exe clonehd API function 

to create a new instance of any of the VMs within the VMIR, and then passes the 

attributes from the GraphML file to the VM as configuration settings through the 

VboxManage function. When the user clicks the virtualize button within the GUI, the 

VMP clones and configures each of the VMs within the GraphML file. 

A functional requirement from McBride’s thesis was for the prototype to infer a 

system configuration in the absence of a complete accompanying configuration. As the 

VMIR is populated with gold disk images of all anticipated OS versions, the only 

required attribute is the OS version itself; other attributes must be manually configured 

after the system has been instantiated.  
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3. Topology File Creation 

Test: Does the VMP accurately generate the topology.gns3 JSON file from a GraphML 

input file? 

Result: For testing purposes, the topology.gns3 JSON file was hard-coded within the 

VMP by manually building the conceptual network within GNS3, then exporting the 

JSON file that was generated as a result of building the GNS3 project. Further 

development efforts are required before the prototype will be able to dynamically convert 

the GraphML input file into the JSON format. It is important to note that this 

functionality is critical to the operation of the Virtualization Module, and will need to be 

completed before MAVNATT is able to function as designed.  

4. Network Device Cloning  

Test: Are network devices automatically created and configured within GNS3 based 

upon the GraphML input file? 

Result: When the topology.gns3 JSON file is loaded into GNS3 through the VMP, the 

network simulator automatically creates distinct devices based upon the contents of the 

JSON node data. At the time of testing, the conceptual network was manually created 

within GNS3 to generate a corresponding JSON file; this file was then hard-coded into 

the VMP for future demonstration of how the program will operate in its development 

end state. As noted within the results of Unit Test 3, further development to dynamically 

convert the GraphML input file into the JSON format is required to enable this 

functionality in real time.  

5. Network Partitioning 

Test: Does the configuration of a MAVNATT virtual network prevent virtual nodes from 

interfering with operational network?  

Result: To test the functionality of the IP filtering configuration, we created a test 

network with three IP hosts, as seen in Figure 21. VirtualHost1 simulated the machine 

hosting the Virtualization Module, OperationalHost1 simulated a machine within the 

operational network hosting the Mapping and Awareness Modules with which 
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communication is required, and OperationalHost2 simulated a live machine on the 

operational network with which communication is forbidden. 

 

  

Figure 21. IP Filtering Functionality Test Network 

VirtualHost1 was configured with a Windows IP Security Policy that established 

an implicit deny policy to block all outbound traffic. A permit rule precedes the implicit 

deny to allow valid outbound traffic only to OperationalHost1, simulating 

communication with the Mapping and Awareness Module host. A ping test was 

conducted to determine reachability of OperationalHost1 and OperationalHost2 from 

VirtualHost1, as seen in Figure 22. These test results demonstrated successful isolation 

between the virtual and operational networks. 
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Figure 22. Network Partitioning Through IP Filtering 

C. SYSTEM RESOURCE REQUIREMENTS 

This section discusses the system requirements of the individual Virtualization 

Module components. Where possible, the minimum requirements for each component are 

referenced. Actual use-case resource utilization levels were substituted in the absence of 

applicable manufacturer guidance.  

1. Virtualization Module Program 

The MAVNATT VMP is a Python program running in a 64-bit Windows 7 

environment in this prototype. Although there are no published hardware requirements 

for Python, there are many examples of Python programs running on Windows 95-era 

hardware that far exceed the complexity of the VMP [23]. Therefore, the resource load 

placed upon the host machine by the Python program is insignificant when compared to 

the hypervisor and network simulator components.  
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2. VirtualBox 

The VirtualBox hypervisor’s system requirements are minimal prior to hosting 

VMs; however, adding a VM introduces the system resource requirements that are 

inherent to the guest OS. For example, a 64-bit Windows 7 VM requires a 1GHz 

processor, 2GB of RAM, and 20GB of HDD space [20].  

Each of the VMs share the physical processor of the host machine through the use 

of software multiprocessing (SMP). VirtualBox will see each individual thread in a 

hyper-threaded machine, however virtual machines should not be configured to use more 

central processing unit (CPU) cores than are physically available [3, p. 47].  

The hypervisor statically allocates RAM to each VM based upon the 

configuration provided by the system administrator; once an amount of RAM is 

allocated, it is unavailable for use by other VMs within the hypervisor or the host OS. For 

example, a single instance of a Windows Server 2012 VM allocated with the minimum 

memory requirement of 2GB increases the RAM resource demand on the host machine 

proportionally to the amount of RAM allocated to the VM. While this characteristic did 

not significantly impact our prototype system due to the small size of the test network, 

scaling MAVNATT to an operational environment with 100+ computer nodes will 

require a host with a proportional amount of physical RAM.  

The VirtualBox application itself places no significant burden on the host 

machine, assuming the host machine has enough CPU, RAM, and HDD resources for 

each of the guest VMs [3, p. 10]. Compatible host OSs include: 

 Windows Vista, Server 2008/2012, Windows 7/8  

 Mac OS X, 10.8 through 10–11 

 Linux Ubuntu 10.04 to 15.04, Debian GNU/Linux 6.0/8.0, Oracle 
Enterprise Linux 5/6/7 

 Redhat Enterprise Linux 5, 6 and 7, Fedora Core / Fedora 6 to 22, Gentoo 
Linux, openSUSE 11.4 through 13.1, Mandriva 2011 

 Solaris 10/11 
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3. Graphical Network Simulator-3  

While the published minimum system requirements for GNS3 are a 1.5GHz 

processor, 4GB of RAM, and 250MB of free drive space, there are many real-world use 

cases from which to determine the resources a particular implementation will require 

[24]. The GNS3 network simulator was originally developed to create Cisco network 

environments for training purposes [4, p. 2]. A typical Cisco Certified Internetwork 

Expert (CCIE) training lab consists of 20–25 nodes and requires the equivalent of an Intel 

core i5 processor with 8GB of RAM for a Windows implementation. Figure 23 depicts 

GNS3 running our conceptual network on a 64-bit Windows 7 host, with an i7 processor 

and 8GB of RAM. Since our prototype operational network includes only four nodes, this 

system is more than sufficient, assuming it will not be hosting additional VMs.  

 

 

Figure 23. Virtualization Module Conceptual Network, without VMs 

However, when all of the VMs within the conceptual network are incorporated 

into the GNS3 network, as depicted in Figure 24, the RAM usage rapidly spikes. As 

expected, this hardware platform configured with 8GB of RAM is inadequate for eight 
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VMs and four network devices. A system with this hardware configuration could 

realistically host two Windows 7 VMs with the minimum RAM allocation of 2GB each. 

This would provide the host OS with 2GB, and the remaining 2GB of RAM for the 

virtual network devices within GNS3.  

 

 

Figure 24. Complete Virtualization Module Conceptual Network 
Running within GNS3  

D. SCALABILITY 

1. VirtualBox  

The VirtualBox Main API provides the capability to create, launch, and 

communicate with VMs hosted on remote instances of the hypervisor using the headless 

vboxmanage command. This feature introduces modularity into the architecture and 

enables decoupling of the resource-intensive VirtualBox from the remaining MAVNATT 

components, thereby allowing the tool to scale as needed. The VirtualBox Virtual Remote 

Desktop Extension (VRDE) feature allows remote access to any running VM. VRDE is 

based upon the Remote Desktop Protocol (RDP) originally built into Microsoft Windows, 

with additions for universal serial bus (USB) support [3, p. 14]. VRDE works at the 
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virtualization layer rather than relying upon the native Windows RDP server; as such, it 

can be used with any OS supported by VirtualBox, including those with a command line 

interface (CLI) only. VRDE uses the RDP client provided in all Windows versions and 

uses the default RDP port 3389. Enabling the feature in VirtualBox is a straightforward 

process, as depicted in Figure 25. Once the feature has been enabled, any computer with 

TCP/IP connectivity to the VM can use a standard RDP client to make a remote 

connection.  

 

 

Figure 25. Enabling VRDE in VirtualBox  

2. Graphical Network Simulator-3  

Although GNS3 can run 100+ nodes on a modestly configured host machine [25], 

it also provides the Remote Server feature to offload resource demands from the local 

host. This feature allows a locally installed simulator to interface with and control 

additional instances of GNS3 hosted on remote hosts or cloud-based infrastructure [26]. 

This feature allows the network environment to scale as widely as needed. As Figure 26 

shows, the GNS3 Remote Server feature requires minimal configuration to enable, and 

allows any local or remote VMs to communicate across the entire Virtualization Module 

environment.  



 54

  

Figure 26. GNS3 Remote Configuration Settings  

E. SUMMARY 

The testing of the Virtualization Module prototype showed that the objectives of 

this research are indeed attainable. The APIs for the hypervisor and network simulator 

provide sufficiently granular access to each program’s feature set in order to create the 

desired virtual environment. Although our testing revealed that the functionality of the 

Virtualization Module does not currently meet all of the requirements outlined in Chapter 

III, substantial progress has been made toward those goals. The ability to dynamically 

convert a GraphML file into a JSON file that GNS3 uses to create the virtual network 

environment is a critical design element that is not functional at this time. Additionally, 

the RAM requirements of the VMs employed in the Virtualization Module place a 

significant resource burden on the host machine. As a result, our testing showed that this 

prototype system is best suited to run on an enterprise-class server.  
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VI. CONCLUSIONS AND FUTURE WORK 

A. OVERVIEW 

This research has resulted in the development of a MAVNATT Virtualization 

Module prototype and has made great strides toward the functionality envisioned by the 

MAVNATT project developers and sponsors. While this prototype system meets the 

basic functional requirements identified by McBride, this project would benefit from 

further refinement and research. This chapter details conclusions resulting from the 

design and implementation of the prototype, then discusses areas where future research 

efforts could be focused  

B. CONCLUSIONS 

The research objective of this work was to determine the feasibility of creating a 

virtual copy of an operational network based upon a model of the network using an open-

format graph file. By developing a prototype of the MAVNATT Virtualization Module, 

we concluded that this concept is indeed feasible. While the complete functionality that 

the Virtualization Module will provide when it reaches its development end state is not 

achieved in this prototype, the path forward toward that goal is much shorter as a result of 

our research and development efforts.  

1. Research Objectives 

The main objective of this work was to provide a prototype of MAVNATT’s 

Virtualization Module. The desired functionality of the prototype was to have it receive 

an open-format graph file as an input, interpret the file to create corresponding computers 

and network devices within the MAVNATT virtualization hypervisor and network 

simulator, and establish basic network connectivity between those devices.  

An additional objective of this research was to create a virtualized instance of the 

Malicious Activity Simulation Tool (MAST) environment within the Virtualization 

Module. At the time this thesis was completed, parallel efforts to install MAST in a 

virtual network and export the servers and clients as VMDK files were still underway. As 
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VMDK is a VirtualBox supported virtual machine format, we do not anticipate any 

difficulty with importing the virtualized MAST environment.  

2. Research Questions 

Primary question: Is it possible to develop an automated process to virtualize the 

primary components (router, switches, computers, and links) of an operational network, 

based upon an open-format graphical representation of the network’s architecture?  

Conclusion: The GraphML file format provides tremendous flexibility in the types of 

attribute data that can be stored for each node and edge element; this flexibility provides 

the ability to store any characteristic of a host on the operational network. At the time this 

work was completed, the VMP was not entirely capable of parsing the GraphML file 

automatically, however that capability is close to being functional. We believe that an 

additional development will yield a prototype that is capable of fully addressing this 

research question.  

Secondary question 1: To what level of granularity can the MAVNATT designated 

hypervisor and network simulator application program interfaces (API) be used to mirror 

the operational network in a virtual instance? 

Conclusion: As discussed earlier, both VirtualBox and GNS3 make their entire feature 

sets available to developers through their respective APIs. When coupled with the 

tremendous flexibility of the GraphML file format, literally any supported feature 

supported by the hypervisor or network simulator can be brought over from the 

operational network to provide nearly identical configurations between the two networks.  

Secondary question 2: Can the prototype meet the functionality requirements identified 

by McBride [1, p. 61], in order to provide a useful training environment?  

Conclusion: As demonstrated through the prototype testing, the functional requirements 

can be met, although not through an automated process at this point in its development. 
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C. FUTURE WORK 

There are many opportunities to refine and expand the prototype system through 

further research Future work should focus on incorporating additional functionality that 

will directly benefit MAVNATT’s intended application: the tactical network. Toward this 

goal, the recommendations presented in this section focus on ways to improve the 

Virtualization Module for its future integration into the enterprise environment.  

1. Software Licensing 

Resource stewardship has become an increasingly dominant theme in DOD 

information technology (IT), and coherent management of enterprise software licenses is 

a critical consideration toward that goal [27]. The MAVNATT Virtualization Module can 

be configured to incorporate software license management into its design, and can 

provide the ability to accommodate Microsoft Key Management Services (KMS) 

functionality within the virtual environment. Since KMS is a standard role included with 

the Windows Server OS, the MAVNATT VMIR can be explicitly configured to include a 

KMS server template. This allows VMs to obtain DOD Joint Enterprise License 

Agreement (JELA) licenses [28] through centralized license management within the 

MAVNATT virtual environment. 

In addition to Microsoft Windows OS versions, the MAVNATT VMIR can 

include standard Cisco switch and router images for devices approved for use in the .mil 

environment. These switches and routers can be preconfigured with the enterprise IOS 

images provided through the JELA.  

2. Handheld Device Modeling 

With the growing adoption of tactical handheld systems such as the Persistent 

Close Air Support (PCAS)/Kinetic Integrated Low-cost SoftWare Integrated Tactical 

Combat Handheld (KILSWITCH) devices at the tactical edge of the network [29], further 

development efforts to integrate handheld devices into the VMIR would provide greater 

capability for virtualizing operational networks. In addition to utilizing MAVNATT to 

virtualize the basic components of an operational network, such as routers, switches, 
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desktops, and servers, the Virtualization Module can be used to import any compatible 

handheld VM. The Android-x86 platform is a Linux distribution that provides a fully-

functional Android environment capable of running on the x86 architecture [30], and can 

be simply imported into a standard hypervisor as a VM, as Figure 27 shows. Once 

imported into the MAVNATT environment, these devices can be configured with full 

network access, or can be partitioned to simulate an ad-hoc configuration.  

 

 
 

Figure 27. Android-x86 Running in VirtualBox Hypervisor 

3. Build Your Own Network Module 

 In Chapter II, we discussed two methods of providing input to the MAVNATT 

Virtualization Module: executing the Mapping Module to build a GraphML input file 

directly from the current operational network or loading a previously-built GraphML 
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input file. A third method of providing Virtualization Module input would be to provide 

the capability for an administrator to manually select the number and types of network 

nodes to include in the network, then load the administrator-defined GraphML input file 

into the Virtualization Module Program (VMP) where it would be parsed to create a 

corresponding virtual network. A basic implementation of this capability would include a 

menu-driven module added to the VMP, which would include the option to select the 

virtual machines and network devices already included within the Virtualization Module 

Image Repository (VMIR). Such a Build Your Own Network (BYON) module should 

also provide the ability for the administrator to define basic configuration parameters, 

such as IP address, hostname, and next-hop device. Once these basic parameters are 

defined and the file is parsed, the VMP already includes console capability to each 

device, allowing the administrator to take more in depth configuration steps. In addition 

to creating a network from scratch, the BYON Module could be used to modify existing 

GraphML input files to include additional network nodes and links for use in scaling the 

virtual network beyond its initial scope.  
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